Abstract-Induced Modules for Reductive Algebraic Groups With Frobenius Maps

نویسندگان

چکیده

Abstract Let ${\textbf{G}}$ be a connected reductive algebraic group defined over finite field $\mathbb{F}_q$ of $q$ elements and $\textbf{B}$ Borel subgroup $\mathbb{F}_q$. $\mathbb{k}$ we assume that $\mathbb{k}=\bar{\mathbb{F}}_q $ when $\textrm{char}\ \mathbb{k}=\textrm{char} \ \mathbb{F}_q$. We show the abstract-induced module $\mathbb{M}(\theta )=\mathbb{k}{\textbf{G}}\otimes _{\mathbb{k}\textbf{B}}\theta (here $\mathbb{k}\textbf{H}$ is algebra $\textbf{H}$ $\theta character $\mathbb{k}$) has composition series (of length) if \mathbb{k}\ne \textrm{char} In case $\mathbb{k}=\bar{\mathbb{F}}_q$ rational character, give necessary sufficient condition for existence )$. determine all factors whenever exists. Thus obtain large class abstract infinite-dimensional irreducible $\mathbb{k}{\textbf{G}}$-modules.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Factoring Tilting Modules for Algebraic Groups

Let G be a semisimple, simply-connected algebraic group over an algebraically closed field of characteristic p > 0. We observe that the tensor product of the Steinberg module with a minuscule module is always indecomposable tilting. Although quite easy to prove, this fact does not seem to have been observed before. It has the following consequence: If p > 2h − 2 and a given tilting module has h...

متن کامل

Computing in Unipotent and Reductive Algebraic Groups

The unipotent groups are an important class of algebraic groups. We show that techniques used to compute with finitely generated nilpotent groups carry over to unipotent groups. We concentrate particularly on the maximal unipotent subgroup of a split reductive group and show how this improves computation in the reductive group itself.

متن کامل

Algebraic Q-groups as Abstract Groups

We analyze the abstract structure of algebraic groups over an algebraically closed field K, using techniques from the theory of groups of

متن کامل

Nearly Rational Frobenius Groups

In this paper, we study the structure of nite Frobenius groups whose non-rational or non-real irreducible characters are linear.

متن کامل

Spherical D - modules and Representations of Reductive Lie Groups

We study the representations of reductive Lie groups which occur in the space of smooth functions on indefinite symmetric spaces. We characterize these representations in the theory of Dmodules by a condition on the support and a condition on the fibers. This enables us to simplify Oshima-Matsuki's theorem on the discrete series of indefinite symmetric spaces, and to prove an L2-multiplicity on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2021

ISSN: ['1687-0247', '1073-7928']

DOI: https://doi.org/10.1093/imrn/rnaa352